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1 Context

The goal of this challenge is to classify subjects based on their cardiac magnetic
resonance imaging (CMRI) scans into one of five diagnostic categories:

1. Healthy controls
2. Myocardial infarction
Dilated cardiomyopathy

Hypertrophic cardiomyopathy

ook W

Abnormal right ventricle

These categories reflect a variety of structural and functional heart conditions that
can be differentiated through careful analysis of cardiac morphology and function as
captured in CMRI data.

To tackle this classification task, we first aim to extract a set of meaningful features
from the medical images. These features are designed to reflect relevant physiological
properties such as ventricular volumes, myocardial thickness, and ejection fractions.
Once extracted, these features will serve as input to various machine learning models,
including Random Forests, XGBoost, Support Vector Machines, and Logistic Regres-
sion, to predict the corresponding class label.

This pipeline emulates a clinically-inspired approach, where diagnostic decisions
rely on interpretable and quantifiable markers derived from imaging, while leveraging
the predictive power of modern machine learning classifiers.

2 Segmentation Methodology

In this section, we detail the method implemented for segmenting the left ventricle
(LV), which is critical for extracting robust features.

Unlike more complex methodologies such as iterative thresholding for endocardial
contour extraction or active contour models (ACM or snakes) for epicardial contour
extraction, described in [1], our method simplifies significantly by directly leveraging
provided myocardium segmentation masks.

2.1 Method Overview

As illustrated in Figure 1, the LV (blue region) is surrounded by the myocardium
(green region). Given that myocardium segmentation is available, we will only use
that information to easily extract the desired area.

2.2 Segmentation Steps

The simplified segmentation process involves the following sequential steps:

1. Myocardium Mask Utilization: Directly use the provided myocardium seg-
mentation mask.
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Figure 1: Example of the LV (blue) surrounded by the myocardium (green).

2. Convex Hull Computation: Compute a convex hull around the myocardium
to define a smooth enclosed region.

3. Myocardium Exclusion: Subtract the myocardium region from its convex
hull, effectively isolating the LV cavity.

4. Connected Component Filtering: Retain only the largest connected com-
ponent to ensure anatomical continuity.

5. Hole Filling and Final Convex Hull: Apply morphological operations to fill
internal holes, followed by a final convex hull to yield a clean and anatomically
plausible LV mask.

The steps of the proposed segmentation method are illustrated in Figure 2, showing
the evolution from the original image to the final LV mask.

Myocardium Convex Hull Exclude Myocardium Final LV

Figure 2: Visual representation of the simplified left ventricle segmentation steps.
From left to right: (1) original image, (2) myocardium mask, (3) convex hull compu-
tation, (4) myocardium exclusion, and (5) final LV mask after morphological refine-
ment.

It is pertinent to mention that this is easily computable due to the availability
of the segmentation of the myocardium. In other contexts, we should have applied
more complex methodologies such as iterative thresholding, region-growing based on
intensity, among others. Our approach provides a simpler, computationally efficient,
and robust alternative.
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2.3 Evaluation of LV Segmentation Accuracy

To evaluate the performance of our proposed left ventricle (LV) segmentation method,
we computed the Dice similarity coefficient (DSC) on the training set, where full
ground truth annotations are available. The Dice score is defined as:

2PN G
e )

where P is the predicted LV mask and G is the ground truth mask (label 3 in our
dataset).

DSC

Importantly, our method assumes that a segmentation of the myocardium (label
2) is available, which is consistent with the information provided at test time. Thus,
the evaluation measures how well the LV cavity can be reconstructed from the my-
ocardium mask alone, without relying on image intensities or learned models.

After running our method across all slices of the training set, and excluding slices
where the ground truth LV cavity is not present, we obtained a mean Dice score of
0.9999. This near-perfect score confirms that, under the assumption of a known my-
ocardium mask, our approach produces highly accurate and geometrically consistent
LV segmentations.

3 Classification

The selected features for classification encompass both functional and anatomical
cardiac descriptors. These include end-diastolic and end-systolic volumes for the
left and right ventricular cavities (LVC_ED_Volume, LVC_ES_Volume, RVC_ED_Volume,
RVC_ES_Volume), as well as the left and right ejection fractions
(Ejection_Fraction_Left, Ejection_Fraction_Right). These variables are core
indicators of ventricular performance and are widely used in clinical practice to assess
contractility and diagnose heart failure [2, 3, 4].

To compute the ejection fraction (EF) of the left and right ventricles, we used
the standard clinical formula:

Vep — VEs

EF = x 100 (2)

Vep
where:

e Vgp is the end-diastolic volume (maximum ventricular volume),
e Vgg is the end-systolic volume (minimum ventricular volume).

These volumes were estimated from the segmentation masks by counting the num-
ber of voxels in the cavity at the ED and ES phases, and multiplying by the physical
voxel volume:

V = VozelCount x VozelSize, x VoxelSize, x SliceT hickness (3)

In addition, we included myocardial thickness at both ED and ES phases
(Myocardium_Thickness_ED, Myocardium_Thickness_ES) as structural features.
Patient-specific factors such as height and weight were also included.
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3.1 Classifier Performance without Data Augmentation

In this experiment, we compare four classifiers: Random Forest, XGBoost, SVM and
Logistic Regression. These classifiers were splitted on an 80 %,/20 % train/validation
of the raw feature set. Each model was tuned via 5-fold grid search over its hyper-
parameters. Table 1 summarizes the selected parameters and the validation accura-
cies.

Table 1: Validation accuracy and best hyperparameters for each classifier, without
data augmentation.

Model Best Hyperparameters Val. Accuracy

n_estimators = 100,
Random Forest max_depth = None, 90.0 %
min_samples_split = 2

n_estimators = 200,

XGBoost max_depth = 2, 95.0 %
learning_rate = 0.1

SVM (linear) c=0.1 100.0 %

Logistic Regression (Ibfgs) C = 10 100.0 %

These results show that, even without any data augmentation, the feature space
is highly separable: Random Forest achieves 90.0 % accuracy, XGBoost 95.0 %, and
both SVM and Logistic Regression reach perfect scores on the validation split. We
can see the confusion matrices in the Figure 3.

Random Forest

XGBoost

Figure 3: Confusion matrices for the four tuned classifiers (Random Forest, XGBoost,
SVM and Logistic Regression) on the held-out validation set.

While the perfect validation accuracy suggests excellent results, it may also in-
dicate potential overfitting, which can be tackled using data augmentation techniques.

3.2 Classifier Performance with Data Augmentation

To assess the impact of data augmentation on classifier robustness, we applied the
following transformations to each training subject (five augmentations per original
sample). The transformations were based on the ones used in [4].

1. RandomAffine: scaling in the range [0.6, 1.4], rotation up to +5°, translation
up to 5mm in the LR and AP axes.

2. RandomFlip: horizontal (LR) or vertical (AP) flip with probability 0.5.
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Features were then extracted from both original and augmented subjects using the
same LV segmentation pipeline. We retrained and tuned the four classifiers under the
identical grid-search setup, using an 80/20 train/validation split. Table 2 summarizes
the best hyperparameters and validation accuracies with data augmentation.

Table 2: Validation accuracy and best hyperparameters for each classifier, with data
augmentation.

Model Best Hyperparameters Val. Accuracy

n_estimators=200,
Random Forest max_depth=None, 93.33%
min_samples_split=2

n_estimators=200,

XGBoost max_depth=4, 97.50 %
learning_rate=0.1

SVM (RBF) C=10, kernel=’rbf’ 95.00 %

Logistic Regression (Ibfgs) C=10 90.83 %

These results indicate that data augmentation improves generalization for XG-
Boost and Random Forest, while SVM and Logistic Regression remain competitive.
The highest validation accuracy (97.5 %) is achieved by XGBoost, suggesting that it
benefits most from the diversified training set. Figure 4 shows the confusion matrices
for each classifier.

Figure 4: Confusion matrices for the four classifiers (Random Forest, XGBoost, SVM,
and Logistic Regression) trained on the augmented dataset.

3.3 Features Importance

To gain insight into which features contributed most to the classification task, we
examined the feature importances obtained from Random Forest and XGBoost.

As shown in Figure 5, both models strongly emphasize the relevance of the left
ventricular ejection fraction (Ejection_Fraction_Left), followed by the right ven-
tricular ejection fraction and end-systolic volumes of both ventricles. These features
are physiologically meaningful, as they capture the contractile performance and vol-
umetric status of the heart during different phases of the cardiac cycle. In addition,
myocardial thickness measurements at both ED and ES phases were also among the
most important features, highlighting their value in assessing structural heart func-
tion. The central role of left ventricular ejection fraction (LVEF) in assessing and
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managing heart failure has been well established in clinical literature. In particular,
reduced LVEF (< 40%) is a defining criterion for heart failure with reduced ejection
fraction (HFrEF), a condition characterized by progressive ventricular dilation and
adverse cardiac remodeling [5].

Top 10 Feature Importances (Random Forest) Top 10 Feature Importances (XGBoost)

Ejection_Fraction_Left

Ejection_Fraction_Right

RVC_ES_Volume

LVC_ES_Volume

Myocardium_Thickness_ED

Myocardium_Thickness_ES

Height

RVC_ED_Volume

Weight

LVC_ED_Volume

0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.3!
Mean decrease in impurity Mean decrease in impurity

Figure 5: Top 10 most important features according to Random Forest (left) and
XGBoost (right), based on mean decrease in impurity. Both models highlight
Ejection_Fraction_Left, Ejection_Fraction_Right, and ventricular volumes as
the most discriminative features. The importance values reflect how much each fea-
ture contributes to reducing classification uncertainty across all trees.

We can see that there is a consistency between the two models in prioritizing
cardiac dynamic features (particularly Ejection_Fraction_Left). This supports
the robustness of the extracted descriptors and their ability in this classification task.

3.4 Classifier Decision Boundaries in PCA Space

To better understand how each classifier separates the classes in feature space, we
projected the data onto the first two principal components and visualized the de-
cision boundaries of the four main models used in our study (Figure 6). The first
two components capture a substantial portion of the variance in the data, specifically
68.0% for PC1 and 28.4% for PC2, making this 2D projection informative for class
separation analysis.

The decision surfaces show distinct patterns: Random Forest and XGBoost pro-
duce non-linear, axis-aligned partitions; SVM defines smooth non-linear boundaries;
and Logistic Regression results in linear separation. These visualizations qualitatively
support the numerical performance metrics presented earlier, highlighting the consis-
tency between the learned decision boundaries and the underlying class structure.

4 Possible Improvements

While the proposed pipeline demonstrates strong classification performance using a
relatively small set of interpretable features, several avenues exist to further enhance
the model.
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Figure 6: Decision boundaries of the four main classifiers projected onto the PCA-
reduced 2D feature space. The axes indicate the percentage of variance explained by
each principal component (PC1 and PC2).

First, the current feature set includes volumetric and functional descriptors such
as ejection fractions, cavity volumes, and myocardial thickness at two key timepoints
(ED and ES). However, prior work [3] has demonstrated that additional domain-
specific features can further improve model robustness and interpretability. These
include instant anatomical features (such as circularity or minimum and maximum
thickness), and dynamic features derived from the full time series.

Incorporating such features, particularly dynamic descriptors beyond ED and ES,
could allow models to capture subtle temporal patterns indicative of early or complex
cardiac dysfunction.

5 Conclusion

In this work, we developed a segmentation-based pipeline for classifying cardiac
pathologies from CMRI images. By combining geometric and functional features
extracted from the segmented left and right ventricles and myocardium, we trained
several supervised classifiers and achieved high validation performance. Among the
tested models, XGBoost and SVM showed the most consistent results, both with and
without data augmentation.

Beyond accuracy, we emphasized feature interpretability and anatomical relevance.
Features such as ejection fraction, ventricular volumes, and myocardial thickness
emerged as key predictors, aligning with established clinical knowledge.
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